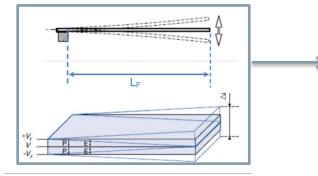


ARRAYCON

Piezo modeling

ZhongZhe DONG


Restricted © Siemens AG 2015

Realize Innovation.

Piezo modeling

Project context:

Complexity about piezo actuators/sensors:

- Multiple layers of piezo crystals, electrodes
- boundary conditions
- Numerical modeling is always simplified

Characterize the actuators/sensors properties:

Can be used in the projects

Objectives of piezo modelling:

- a) Numerical modeling of piezo actuator
- b) Validation with experiment

Tasks:

- 1. Detail model in SAMCEF (layers and electrodes)
- 2. Benchmark against 1D (Beam model)
- 3. Execute experimental campaign (single clamped-free actuator)
 - With mechanical excitation
 - With electrical excitation
- 4. Comparison between simulation and experiments Restricted © Siemens AG 2015

SIEMENS

Different modelling methods

Shell element modelling:

- 1. Uniform voltage on each piezo-layer
- 2. Two layer composite shell behavior in Samcef
- 3. Two electrical nodes (one for each piezo-layer)

Solid element modelling:

- 1. Uniform voltage on each piezo-layer
- 2. Two layer standard volume behavior in Samcef
- Two electrical solid elements (The nodes of the electrical elements are linked with the electrodes which formed by the nodes on the structure)

Beam modelling:

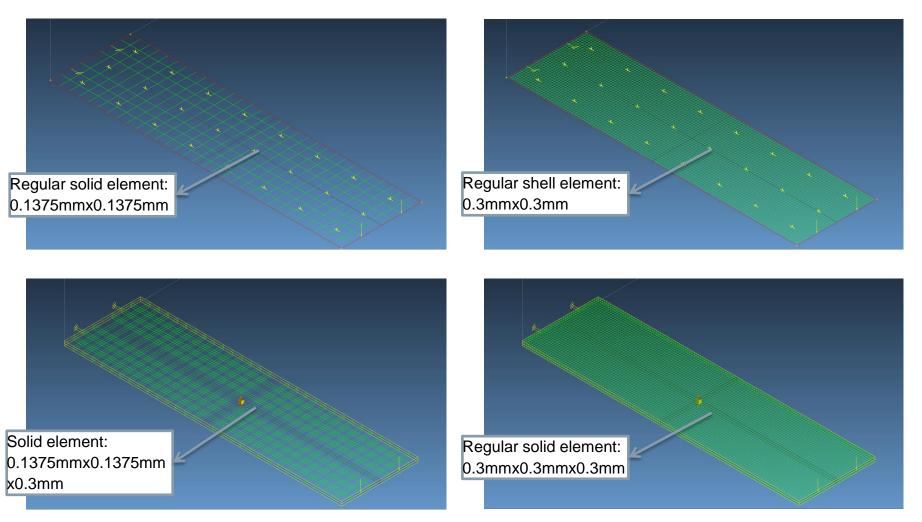
- 1. Uniform voltage on each piezo-layer
- 2. Single Euler-Bernoulli beam model
- 3. Two tow piezo-layers

Plate modelling:

- 1. Uniform voltage on each piezo-layer
- 2. Single Kirchhoff plate model
- 3. Two piezo-layers

Restricted © Siemens AG 2015

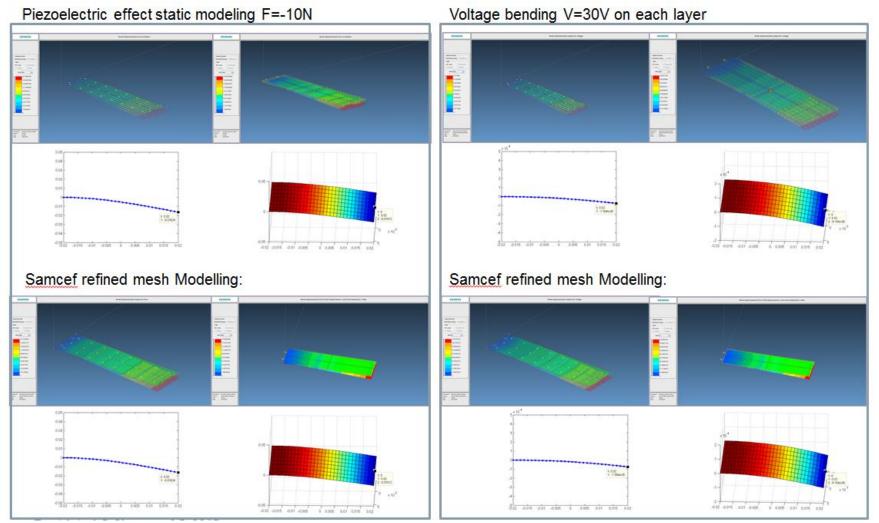
Rectangular section Beam/Plate	
Length	40 [mm]
width	11 [mm]
Thickness	0.6 [mm]
Poisson ratio	0.29
density	7954 [kg/m^3]


PIC255/252

Physical and Dielectric Properties					
Density ρ [g/cm³]	7.80				
Curie temperature T _c [°C]	350				
Relative permittivity in the polarization direct Perpendicular polarization $\epsilon_{\rm n}$	to the 1650				
Dielectric loss factor tan δ [10-3]	20				
Electro-Mechanical Properties					
Piezoelectric deformation coefficient, piezo d ₂₁ [pm/V]	modulus* -180				
d ₃₃ [pm/V]	400				
d ₁₅ [pm/V]	550				
Acousto-Mechanical Properties					
Elastic compliance coefficient					
s ₁₁ ^E [10 ⁻¹² m ² /N]	16.1				
s ₃₃ ^E [10 ⁻¹² m ² /N	20.7				
Mechanical quality factor Q _m	80				

Siemens PLM Software

Meshing refining in Samcef modelling


The meshes are standard in Matlab modellings: 1D 1.3mm and 2D 1.3mmx1.3mm

Restricted © Siemens AG 2015

Page 4 2015-04-29

Modelling results

Restricted © Siemens AG 2015

Siemens PLM Software

Modelling results

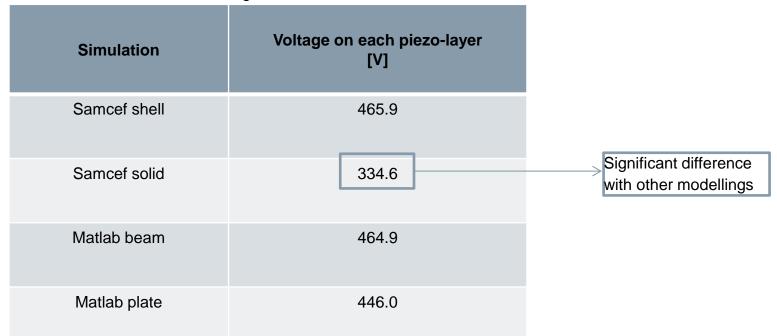
Piezoelectric effect static modeling F=-10N			Voltage bending V=30V on each layer				
Simulation	Maxmum displacement [mm]	Error		Simulation	Maxmum displacement [µm]	Error	
Samcef shell ¹	16.43			Samcef shell ¹	76.90		
Samcef solid ²	16.18			Samcef solid ²	61.96		
Matlab beam	16.24	-1.16% ¹	3.71% ²	Matlab beam	75.84	-1.38% ¹	22.40% ²
Matlab plate	16.16	-1.64% ¹	-1.24% ²	Matlab plate	71.41	-7.14% ¹	-7.14% ²

Samcef refined mesh Modelling:

Simulation	Maxmum displacement [mm]	Error		Simulation	Maxmum displacement [µm]	Error	
Samcef shell ¹	16.44			Samcef shell ¹	76.84		
Samcef solid ²	16.27			Samcef solid ²	70.07		
Matlab beam	16.24	-1.22% ¹	-0.18% ²	Matlab beam	75.84	-1.30% ¹	8.23% ²
Matlab plate	16.16	-1.70% ¹	-0.68% ²	Matlab plate	71.41	-7.07% ¹	1.91% ²

The Samcef modelling are considered as the reference for the error calculation.

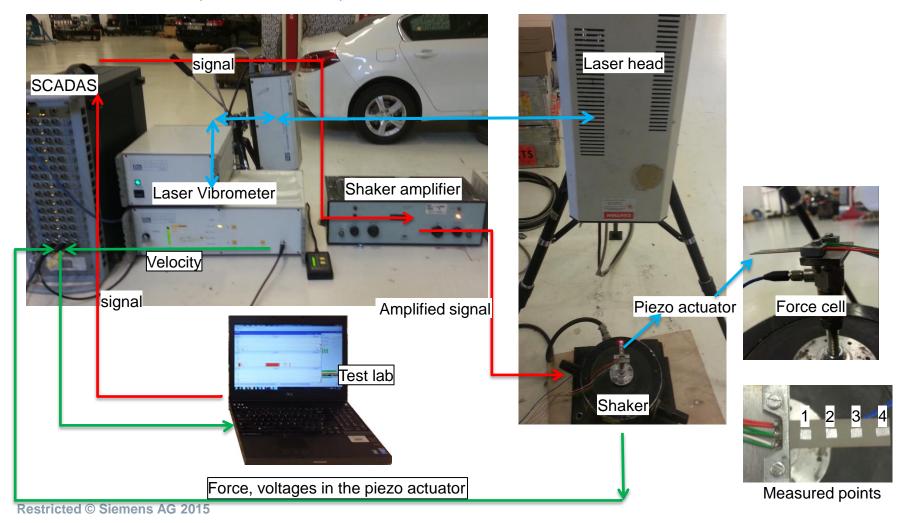
¹ and ² indicate different correspondent references


Restricted © Siemens AG 2015

Page 6 2015-04-29

Modelling results

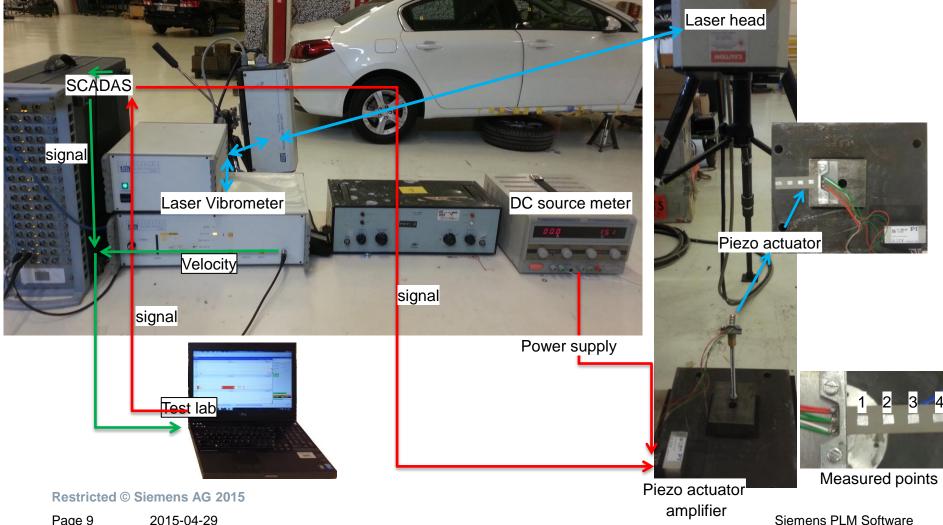
Piezoelectric effect static modeling F=-10N



- The voltage does not receive any significant effect from the mesh size.
- The significant voltage difference comes from the simplification of the 1D and 2D modeling: the piezo constants are modified in the 1D and 2D modelling.

Experimental test setup

Mechanical excitation experimental test setup:


Page 8 2015-04-29

Siemens PLM Software

Experimental test setup

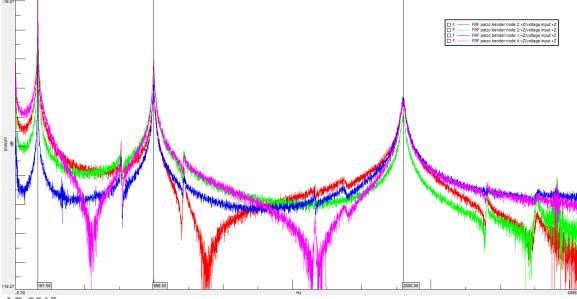
Electrical excitation experimental test setup:

Page 9

Experimental results

Vibration testing of the bilayer bender

	Test Lab	Matlab beam modelling	Matlab plate modelling	From catalogue		veen tests o modeling	
First natural frequency	163.8 Hz	173 Hz	175 Hz	160 Hz (+/- 20%)	5.6%	6.8%	
Second natural frequency	1013.9 Hz	1057 Hz	1064 Hz		4.3%	4.9%	
Third natural frequency	2835.8 Hz	2934 Hz	2978 Hz		3.5%	5.0%	
<figure></figure>							

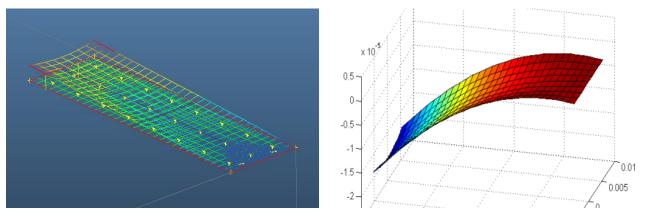

Page 10 2015-04-29

Experimental results

Voltage excitation testing of the bilayer bender

	Test Lab	Matlab beam modelling	Matlab plate modelling	From catalogue	Error between tests and Matlab modeling	
First natural frequency	161.50 Hz	173 Hz	175 Hz	160 Hz (+/- 20%)	7.1%	8.4%
Second natural frequency	998.5 Hz	1057 Hz	1064 Hz		5.9%	6.6%
Third natural frequency	2799.1 Hz	2934 Hz	2978 Hz		4.8%	6.4%

Restricted © Siemens AG 2015



Finding

- 1. Matlab beam modelling:
- Consider the effects of piezo-constants e₃₂ & e₃₃ into the modelling
- A single layer Euler-Bernouill beam model can be used to simulate multi-layer actuators.
- 2. Matlab plate modelling
- Using the 2D piezoelectric constitute relation in the modelling
- The Poisson effect plays a role in the piezo modelling (slide 10).
- The modelling should be adopted to simulate multi-layer actuators to reach a good level accuracy.

Finding

Effect of the piezoelectric constant on the deflection of the bilayer bender $(e_{31} = 0 \& e_{32} \neq 0)$ in Samcef and Matlab modelling:

- Different longitudinal bending directions
- Create a 20% displacement difference (shows in slides 5 & 6) between Samcef and Matlab modelling (This longitudinal bending due to e_{32} reduce the bending due to e_{31})

This phenomena in Matlab modeling comes from the Poisson effect between longitudinal and transverse directions.

Restricted © Siemens AG 2015

Page 13 2015-04-29

Conclusion

Conclusion on the numerical modeling:

- 1. Both Samcef shell and solide element modelling are working .
- 2. Matlab beam modelling shows a good agreement with Samcef shell modelling.
- 3. The natural frequencies from the Matlab modelling has an agreement with the experimental tests.

Ongoing steps:

- 1. Run more experiment tests of the bi-layer benders
- 2. Characterize the properties of the bi-layer bender
- 3. Validate the Numerical modeling by experiments